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ON LINEAR WAVE MOTIONS IN
MAGNETIC-VELOCITY SHEARS

By I.A. ELTAYEB
Department of Mathematics, Faculty of Science,
University of Khartoum, Khartoum, Sudan
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o) 5 The propagation properties of linear wave motions in magnetic and/or velocity
TO shears which vary in one coordinate z (say) are usually governed by a second order
P4 linear ordinary differential equation in the independent variable z. It is proved that

associated with any such differential equation there always exists a quantity &/ which
is independent of z. By employing %/ as a measure of the intensity of the wave, this
result is used to investigate the general propagation properties of hydromagnetic-
gravity waves (e.g. critical level absorption, valve effects and wave amplification) in
magnetic and/or velocity shears, using a full wave treatment. When variations in the
basic state are included, the governing differential equation usually has more singulari-
ties than it has in the W.K.B.]. approximation, which neglects all variations in the
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608 I.A.ELTAYEB

background state. The study of a wide variety of models shows that critical level
behaviour occurs only at the singularities predicted by the W.K.B.]J. approximation.
Although the solutions of the differential equation are necessarily singular at the
irregularities whose presence is solely due to the inclusion of variations in the basic
state, the intensity of the wave (as measured by &) is continuous there. Also the valve
effect is found to persist whatever the relation between the wavelength of the wave
and the scale of variations of the background state. In addition, it is shown that a
hydromagnetic-gravity wave incident upon a finite magnetic and/or velocity shear
can be amplified (or over-reflected) in the absence of any critical levels within the
shear layer. In a Boussinesq fluid rotating uniformly about the vertical, wave ampli-
fication can occur if the horizontal vertically sheared flow and magnetic field are
perpendicular. In a compressible isothermal fluid, on the other hand, wave ampli-
fication not only occurs in both magnetic-velocity and velocity shears but also in a
magnetic shear acting alone.

1. INTRODUGTION

The propagation properties of linear wave motions in magnetic and non-magnetic systems, with
applications varying from atmospheres to interiors of the planets, have been studied by many
authors (see, for example, Lighthill 1960; Braginsky 1964 ; Hide 1966 ; Bretherton 1966 ; Booker &
Bretherton 1967; Lighthill 1967; Jones 1968; McKenzie 1972; Eltayeb 1972; Acheson & Hide
1973). Bretherton (1966) studied the propagation of internal gravity waves in a shear flow using
the W.K.B.]J. approximation (which neglects variations in the basic state) and showed that at a
height z = z, (say), where the horizontal phase speed of the wave matches the Doppler-shifted
frequency, a ‘critical level’ exists and the wave is neither reflected nor transmitted there but is
absorbed. In a more rigorous treatment Booker & Bretherton (1967) re-examined the same
problem and showed that the waves are transmitted across the critical level but are heavily
attenuated when the Richardson number (which is a dimensionless parameter used as a measure
of the strength of the shear) is of order unity or larger. The reflexion and transmission of gravity
waves by a finite shear has recently been studied by Eltayeb & McKenzie (1975) for all positive
Richardson numbers. They found that the waves give away some of their energy to the basic
flow at the critical level for all positive values of the Richardson number and also the reflected
wave is amplified for small values of the Richardson number provided a critical level exists
within the layer. These results, as well as those of Eltayeb & McKenzie (1977), are consistent
with the conjecture, proposed by McKenzie (1972), that wave amplification (or over-reflexion)
is due to the interaction of negative and positive energy waves. Since all those studies have
been carried out for an incompressible Boussinesq fluid, it would be interesting to know
whether the conjecture will survive in a compressible medium.

Acheson (1972, 1973) studied the propagation of hydromagnetic waves in rotating systems and
in non-rotating systems in the presence of gravity, using the W.K.B.]J. approximation, and
showed that in certain circumstances hydromagnetic waves can exhibit ‘valve’ effects, i.e. they
can penetrate a critical level from one side only. The question to be asked here is: does the valve
effect persist in a full wave treatment which includes variations in the basic state?

Bretherton & Garrett (1968) (see also Hayes 1970) examined the propagation of gravity waves
and defined a quantity they christened, ‘wave action flux’ which is independent of the coordinate
in which the shear varies. This quantity, which is continuous everywhere except at the critical
levels, supplies a convenient measure for the intensity of gravity waves and hence can be used to
examine the effect of the critical level on the waves. Jones (1967) studied the propagation of
internal gravity waves in the presence of a uniform vertical angular velocity and showed that the
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MAGNETIC-VELOCITY SHEARS 609

vertical transport of angular momentum is conserved except at the singularities predicted by the
W.K.B.J. approximation. Rudraiah & Venkatachalappa (1972) extended Jones’s analysis to
include the effects of a uniform transverse magnetic field to show that the vertical transport of
angular momentum is conserved. Grimshaw (1975) studied the propagation of gravity waves in
the presence of a uniform angular velocity which is inclined to the vertical in a vertically sheared
flow and constructed a quantity which is independent of the vertical coordinate. However, no
simple physical interpretation of the quantity was found. It may then be asked: Can all linear
wave motions in a basic state which depends on one coordinate possess a quantity which is
independent of that coordinate ?

The equations governing linear wave motions in one dimensional magnetic and/or velocity
shears can always be reduced to a second order linear ordinary differential equation (see, for
example, Booker & Bretherton 1967; Jones 1967; Eltayeb & McKenzie 1977). A common
feature of the equations obtained for various models is that when variations in the basic state are
retained (as should be the case in a full wave treatment), the equation has more singularities than
when these variations are neglected (asin the case of the W.K.B.]. approximation). The question
then arises: do the singularities introduced by the inclusion of variations in the basic state behave
like critical levels or are they singularities of a different nature, and if so, what are their effects on
the waves?

This work is concerned with the above questions.

In §2 we prove that associated with any second order linear ordinary differential equation in an inde-
pendent variable z there always exists a quantity < which is independent of z. This result is used to study the
propagation properties of hydromagnetic gravity waves in magnetic-velocity shears in the
presence of various constraints. Three particularly different models are studied in §§3-5. The
propagation properties of hydromagnetic-inertial-gravity waves in a Boussinesq incompressible
fluid are examined in §3. In §4 we study magnetic-acoustic-gravity waves and in §5 an aniso-
tropic system in which gravity and magnetic field are both inclined to the direction of the
magnetic shear is investigated. §6 is devoted to a few concluding remarks.

2. THE EXISTENCE OF A WAVE-INVARIANT

The linear treatment of the propagation of wave motions in magnetic and/or velocity shears,
which vary in one coordinate z (say), in compressible and incompressible fluids, usually leads to

an equation of the type vy ) L op () W (2) 4 ¢y(2) W(2) = 0, (2.1)

where a, b, ¢, are functions of the basic state variables and I is the component of velocity in the
direction of the shear, the accent denoting differentiation with respect to the argument (see,
for example, Booker & Bretherton 1967; Jones 1967; Eltayeb & McKenzie 1977, and §§3-5
below). Suppose the shear layer is bounded by z = z; and z = z, and assume that Wis restricted
by the boundary conditions
Wiz) = W(z), W'(z5) =W (2a), (2.2)
in which ; and &, are prescribed constants.
The transformation

W=hj, h=exp—][(bla)dz, (2.3)

reduces (2.1) to Y+ Cf =0, (2.4)

where C = [a(e;—0") +ba’ —b%][a?. (2.5)
39-2


http://rsta.royalsocietypublishing.org/

A

|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

FA \
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

610 I.A.ELTAYEB

To construct an invariant (with respect to z) of (2.1) and (2.2), we need to consider three
different cases.

Case (7). If Cis real, we take the complex conjugate of (2.4), multiply it by ¢ and subtract the
result from (2.4) after it has been multiplied by the complex conjugate of ¢ to get

P =y =0, (2.6)
where the ‘bar’ denotes the complex conjugate. Equation (2.6) and the boundary conditions
(2.2) immediately show that the quantity

o = Re (~ifP), (2.7)
is independent of z.
Case (i1). For imaginary values of C we find, in a similar way, that
N o = Re (), (2.8)
is independent of z.
Case (117). In the case of a complex C (= C,+1C}), we set

Y =¢+iF, (2.9)
and substitute in (2.1) toget ¢"+C ¢ = — (F"+C. F+Ciy). (2.10)
We now choose ¢ such that ¢"+Cp =0, (2.11)
and then F'is a particular integral of F"+C,F = —Cyy. (2.12)

Since C, is real then (2.11) leads to the quantity
o = Re(—ip'9) (2.13)
being independent of z, as in case (i) above. Now ¢ is defined by (2.9) and o/ can be written as
o = Re[—i(y' —iF") (Y +iF)]. (2.14)

Written in this form & is determined by solving (2.4) together with the boundary conditions to
determine the (unique) solutiony and then F'is obtained as a particular integral of (2.12). Thus,
unless there are some inherent pathological defects in the original problem leading to non-
uniqueness in i, the quantity 7 will be unique.

It should be pointed out here that the above proof breaks down at the singular points of (2.4),
i.e. at points z, where |C| =o0. It then follows that with the well-posed system (2.1) and (2.2) there
always exists a unique quantity sZ which is invariant with respect to z except possibly at the singular points of
(2.4).

As a corollary of this we observe that if a singular point, z, of (2.1) is not a singular point of
(2.4) then & is continuous across z, (see §§3 and 4 below).

Returning to linear wave motions in magnetic and velocity shears which are governed by (2.1)
and (2.2), we see that these motions will always possess a ‘wave-invariant’. The term wave-
invariant, which will be used throughout this paper to refer to 27, is suitable since the parameters
of the system, such as the frequency of the wave and the wavenumber in the direction perpendicu-
lar to z, are kept fixed. In these situations & for gravity waves is proportional to the flux of wave
action of gravity waves (Bretherton & Garrett 1968; Hayes 1970).

If the finite shear is bounded by two uniform basic states in the spaces z < z;, and z > z, and
provided there are no singularities at z = z, and z = z, then the wave-invariant is continuous
everywhere except possibly at the singular points within the shear layer. This result will be
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MAGNETIC-VELOCITY SHEARS 611

exploited in the next three sections to examine the natures of the critical levels that can arise in
magnetic and/or velocity shears, as well as to study the phenomenon of wave amplification (or
over-reflexion) by a finite shear using a full wave treatment.

3. HYDROMAGNETIC-GRAVITY WAVES IN A
ROTATING BOUSSINESQ FLUID

3.1. Formulation

Consider an inviscid Boussinesq fluid of infinite electrical conductivity rotating uniformly
with angular velocity €. Take a cartesian system of coordinates (, y, z), rotating with the fluid,
such that the z-axis is vertically upwards and parallel to 2 and the x and y-axes any two per-
pendicular horizontal directions. The equations of motion, continuity, induction and Gauss’s
law admit a basic state in which .

u,=U(z)%, B,= B(2)y, (3.1)
where u# and B are the velocity and magnetic induction respectively, provided the fluid pressure
P, satisfies the equation 9002 Aty = —V (po+ B3I21) +po £, (3.2)
in which p, is the density, # the magnetic permeability and g the gravitational acceleration
(assumed constant). This situation may be realized in the atmosphere if both the horizontal
component of the angular velocity and the variations of the vertical component of the angular
velocity of the earth are neglected, assumptions which may be justifiable in the case of small
period disturbances (of the order less than a day) as opposed to planetary waves for which
the f-plane approximation provides a reasonable approximation (Longuet-Higgins 1965).
Hydromagnetic-gravity waves in rotating fluids are also relevant to the Earth’s and planetary
interiors (Hide 1966; Braginsky 1967).

If we assume an equation of state

%lnpo = —f = constant : (3.3)

then (3.2) and (3.3) give the thermal wind equation

18,20

ey~ g (AU (3.4)

where the prime, as always in this paper, denotes differentiation with respect to the argument. In
the Boussinesq approximation, which is adopted here, the last term on the right hand side of
(3.4) is negligible.

We now assume small disturbances u#, b and p, in velocity, magnetic induction and density
respectively and divide them into normal modes

F(x,y,2,t) = Re{F(z) expi(wt—kx —1ly)}, (3.5)

in which Re denotes ‘the real part of’, to find that the vertical component of u satisfies equation

(2.1) with a4 = 02— 2V — 40Q%2[(D2— 2V?),
o KV Q0% | .o 40%02
b=-U [—29h+ 5 +(@2_12V2)]—1 v [“(@2—121/2)]’
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612 I.A.ELTAYEB

— (&2 —1V2— N2) (k2 +[2),
(3.6)

1 2172 9 ( ’
¢y = U'Tk(0% — 2V2) (6 + 201i] + 252U’ [ZQh [ V]_2l VV'EU

R »?

where V is the Alfvén speed, @ the Doppler-shifted frequency and N is the Brunt-Vaisalla

frequency = Bup,, O =w—kU, N2=fg. (3.7)

The x and y components of velocity, total perturbation pressure II and magnetic induction
(bys by, b ,) are given by
i@ -V U W - ofik(0*—2V?) + 2000 W'
B (R2+1%) b(02—12V?) ’
_ —ikl(@2-12V?) U’W—c?){il (02— [2V2) — 200k} W’
N (k2 +12) O(0% - 12V?)
7 = {k(02—12V2) 4+ 200U’ W + Ha W’
- 102(k2 +[2) ’
[B ilB [B iB’

IB
be—E- + W b —5'114-—0,)- W, bz= ) w. (38)

Employment of the transformation (2.3) reduces the equation for ¥ to (2.4) fory provided that
a?C = a(kDU" + BVV") [1 4 402202/ (0% —[2V?%)?]

4.02]2 120202 402

2772 2 —_
+ kU [ 7 +212 {1+(Az DL (6)2—12V2)}

40204 { 402 12022 ]
TPt vy (G- re

4.Q2L32 402 12.92664

2 7 ' ] 2Ve - ——

+ 22VV'EU {1+("2—12V2)2+(6)2—12V2)2[3w + 212V (@2_Z2V2)2]}

4020 402 402272 120272
N121772 —
+OrY {[”(Az 12V2>H1 <2—12V2>]+<@2—12V2)2[5 @2_12112)2]}

— (K2+12) (5% — 272 — N2)a. (3.9)

Since C'is real, the wave-invariant is given by (2.7) and (2.4). Although the level ® = Oissingular
in the equation for W, the expression (3.9) for C shows that i is regular there. Consequently the
wave-invariant is continuous across such levels.

In the absence of the magnetic field Jones (1967) has shown that the vertical flux of angular
momentum is independent of z. By solving (2.1) and (3.6) with ¥V = 0 he concluded that the
vertical flux of angular momentum is discontinuous across the levels ¢ = 0 (i.e. ® = + 22) but
is continuous across ® = 0. The case of a uniform magnetic field (i.e. ¥ uniform but non-zero) was
studied by Rudraiah & Venkatachalappa (1972). They calculated the vertical flux of angular
momentum taking into account the effects of the uniform magnetic field to show that the vertical
flux of angular momentum is independent of z except at the singularities of (2.1). By computing
the solutions near these levels they concluded that the vertical flux of angular momentum was dis-
continuous across all singularities including @ = 0. In search of a physical interpretation of the
wave-invariant derived above we have calculated .o as given by (2.7) and found that

of = ——Re[idW W' — 201U | W|%], (3.10)

Ihl2
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MAGNETIC-VELOCITY SHEARS 613

from which we can see that the quantity within the square brackets is that defined as G in both
Jones (1967) and Rudraiah & Venkatachalappa (1972). Now in a straightforward manner it can
be shown, using the expressions (3.6) for ¢ and b, that

®?[a|h|? = 1. (3.11)
This shows that the wave-invariant is proportional to the vertical flux of angular momentum.

Consequently the vertical flux of angular momentum is continuous across & = 0 whether the
magnetic field is uniform (and whether it vanishes or not) or non-uniform.

3.2 The wave normal surfaces

In the W.K.B.]J. approximation, i.e. when variations in the basic state are ignored by setting
U’ = V' =0, a local dispersion relation is obtained

i _ (B ) (02— V2) (N4 V2 — 62)
2 (@2_[2]’/2)2__4_92@2 *

(3.12)

In a medium in which U and V are uniform this relation is strictly true.

Since the waves are three dimensional we shall study the cross sections of these surfaces in
planes / = constant and planes £ = constant. In planes / = constant and in the absence of a
flow (i.e. U = 0) equation (3.12) can be written in the form

(02— 2V?) (N2 +[2V2 —0?)

B=r(Rel), = (3.13)

Thus propagation is possible only if 72 > 0. This yields the conditions
DBV24202-20(02+ 12V < w? < 272,
min [N2+272 27242024 20(0Q2 +[2V?)i] < 0?
< max [N2+12V2) 272+ 202+ 20Q(0Q2 + [2V?2)], (3.14)
which show that the first range of w? is made possible by the presence of the magnetic field (i.e.
the slow wave) while the second is that present in the absence of the magnetic field but is here
modified by its presence (see figure 1a).

When a flow is present, the wave normal curves in the (£, £,) plane have four asymptotes
occurring at values of £ given by

by = U0 - Q— (24 B2,
kay = U o+Q—(22+12V2)1], 515
byo = U0 — 0+ (224 V)], (3.15)
kyy = U o+ Q2+ (224 12V2)3].
Also %, vanishes when £ takes the values
EQ = U w— (N2+12V?)i],
) = U Y o-1T),
9 = U-1(0—17) s

Y = UYw+lV),

Y = U'w+ (N2+127?2)]
The suffices I and A refer to ‘inertial” and ¢ Alfvén’ respectively to identify those modes which are
present in the absence of the magnetic field and those which vanish when the magnetic field is
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614 I.A.ELTAYEB

ineffective. This notation is adopted in figure 15, where the cross sections of the wave normal
surfaces in the (£, £,) plane are sketched. It may be noted that all waves appear to have critical
levels and that the waves can propagate on one side of the critical level. However, the cross
sections of the wave normal surfaces in the (/, £,) plane can be different from those in the (%, £,)
plane in that some of the curves do not appear to have critical levels. (See figure 2.) When the
wave normal surfaces are viewed three dimensionally, however, four critical levels are possible.

The advantage of using the W.K.B.J. approximation (see, for example, Reid 1965) to derive a
local dispersion relation is that a qualitative treatment for general basic states becomes possible.

b, ./
(a)

-7l
v
o
%
\\\
2

( yk.
)

b)
! |
M. o
// (>0 ~ /(w<0)\ \\
/ \
/ \
\
S X"
/ Ao o) ) (0} \
‘I 2t n kai 0 Kay ki Ry A ’f
\\ k| kas /}
\ A
\ /
\ /
\ !/
\ I/
]
| ]

Ficure 1. The cross section of the wave normal surfaces for hydromagnetic-inertial-gravity waves in the (%, £,)
plane for a fixed non-zero value of /.

(@) In the absence of a flow. The continuous arrows represent the direction of the group velocity when
N2 < 402% and

(402 — N2)-1{—2V2N24 2QIV 4222V 2+ N2 (422 — N2} < w? < [2V24+ 202+ 20(0Q2 4 2V},

while the discontinuous arrows apply in the remainder of the ranges specified in equation (3.14). The two
straight lines k£, = + 7k are the asymptotes to the curves.

(b) In the presence of a flow. The position of the £ -axis depends on the sign of the &’s. Here it is shown for
kyy < 0. The continuous (discontinuous) curves correspond to N2 S 20Q[Q+ (224 2V2)}]. For notation see
equations (3.15) and (3.16).
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In particular the dispersion relation can be utilized to construct the wave normal surfaces and
the ray trajectories of waves with a wavelength much smaller than the scale of variations of the
basicstate. For fixed / the frequencyw and the wavenumber £ are conserved along a ray path in the
(%, z) plane (see Longuet-Higgins 1965; Lighthill 1967). Similarly, for fixed £ the frequency
and the wavenumber / are conserved along a ray trajectory in the (y, z) plane. Thus from the
dispersion relations the local group velocity can be computed and the direction of the ray
determined. By repeating the process at different heights the ray trajectories can be constructed
(see figure 3).

The cross sections of the wave normal surfaces in planes £ = constant and in planes/ = constant
show that waves can only propagate on one side of the critical level. The implication of this result

|‘ iz /

/
.(\
\ ///\‘
l, .~

|

|

N l
N |

- |
/) |
[

|

x |
|

|

— |

- |

v '
v |
/ |
/ |

(a)

1

v

I

X
\

-
\\"—//

/ \
| \
Ficure 2. The cross sections of the wave normal surfaces for hydromagnetic-inertial-gravity waves in the (, &)
plane for fixed k. Here [, = 6]V,
I = D@+2RY, 1 = DO -22)17,
= @ NV, 1, = (02— NHIa2- 7).

(@) The continuous curves are valid if N2 < &2 < 402, If N2 > % > 402, the curves are composed of the
discontinuous ones plus the two branches with the asymptotes.

(b) 6% > N2, 422, Note that 7, ZI; if N25 2Q26. This is indicated by the discontinuous curves near
! = ;. When &% < N2, 442 the branches near / = +[; vanish and the other two remain.
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\ /
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/
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616 I. A ELTAYEB

is that a wave approaching a critical level is completely absorbed there. However, near a critical
level the local vertical wavelength tends to infinity and hence the assumption on which the
W.K.B.J. approximation is based breaks down. Thus a study of the properties of the waves in the
vicinity of the critical level must take account of the variations in the basic state. This will be
discussed in §3.3 below.

(a) 2

F1cure 3. The cross sections in the (/, £,) plane of some of the types of ray trajectories that can arise in magnetic-
velocity shears in a rotating incompressible fluid under the influence of gravity.
(a) Rays starting near critical levels in magnetic-velocity shears increasing with height. z, is the critical
level and z, is the reflexion point (see figure 2).
() Rays corresponding to the closed loop of figure 24 in a wind increasing with height.
(¢) Rays corresponding to the discontinuous curves of figure 2a.

3.3 Critical levels

Equation (3.9) shows that the equation (2.5) for ¢ has two singularities occurring where
a = ®%—[2V?% = 0. In this subsection we shall examine the solutions in the neighbourhood of
these levels, taking variations in the basic state into account, and determine the effect of these
singularities on the intensity of the wave, as measured by the wave-invariant 7.

Near the singularity ¢ = 0 we have, at leading order,

Y+ (B2 )Y (z=20)* = O,
E = QLU0 [ (@2+BVHEU, + 20, V, V47|, (3.17)
in which the subscript ¢ means that the quantity is evaluated at the critical level z = z,. The

solution of (3.17) has a branch point at z = z,. The matching procedure across z = z, is straight-
forward (see Miles 1961 ; Booker & Bretherton 1g67; Baldwin & Roberts 1970). We get

y = {A(zc——z)%+iE.‘+B(zc—z)%—1E | (z < zc)}’ (3.18)
A*(z—z )ME 4 B¥(z—z )3E (2> z,)
where A* = Fidexp{+nE}, B* = FiBexp{Fnk}, (3.19q)
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MAGNETIC-VELOCITY SHEARS 617
in which the upper (lower) sign applies when
= (D2+DRVHEU, + 20,12V, V, = 0. (3.190)

The evaluation of the wave-invariant below and above the critical level yields

Mbelow =E<IA|2_IB|2)> } (3 20)

L nove = E(|A]exp{ £ 25} — | B2 exp {7 20E)).

For the sake of convenience we shall refer to the solutions of amplitudes 4 and B by the ‘4
solution’ and the ‘B solution’ respectively. Now

|z— 2 |¥HE = |z—z |texp{+iEIn |z, —z]|}.
Thus 4 and B solutions have local vertical wavenumbers, respectively,
k,=FE/(z,—2z), (8.21)

which shows that on either side of the critical level, the 4 and B solutions represent ascending and
descending waves. To determine which is the ascending wave we need to know which of the four
critical levels of (3.12) we are dealing with in order to determine whether the ascending wave is
associated with a positive or a negative £,. For example, in the case of the £y, ( < 0) critical level
of figure 15 (a situation which may occur in a wind increasing with height in the presence of a
magnetic field), and provided N2 < 2Q[Q + (22 + [2V?)#], the ascending wave is associated with
k, > 0. Thus the B solution represents an ascending wave and then the 4 solution must refer to a
descending wave. On the other hand, for a critical level k4, (> 0) of figure 15, in the same
circumstances, the 4 solution is an ascending wave while the B solution is a descending wave.
Also in both cases the amplitudes of the waves are attenuated by a factor exp (—nE) as they
cross to the other side of the critical level. Thus although the waves are heavily attenuated in
crossing the singularity especially for high rotation rates (i.e. large E), nevertheless they still
propagate on the other side of the critical level. Similar arguments apply to the other critical
levels.

We now investigate the singularity 2 = (212, which incidentally is a reflexion point in the
W.K.B.J. treatment as is clearly shown by equation (3.12). Here it is found that

P -Hl(z—z)* = 0. (3.22)

The legitimate solution can be shown to be

_ {Al(zc——z)‘%JrBl(zc—Z)% (z < Zc)’} (3.23)

Fidy(z—z) ¥ FiB(z—2z.)} (z > z,),
where the upper (lower) sign is taken according to
O (O KU+ 12V, V) 2 0.
When the wave-invariant is calculated on both sides of the singularity, it is found that
A netow = Lapove = 2Re (14, By). (3.24)

The wave-invariant then is continuous across this singularity, which is absent in the W.K.B.]J.
approximation, although the solution ¥ is singular there.
40-2
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3.4. Reflexion by and transmission through a finite shear

Suppose that the basic state (3.1) is such that

0, By for z<0 (region I),
U B={U(z),B(z) for 0<z<L (regionII), } (3.25)
U, B, for z>L (region IIT),

and assume that U and B (or equivalently V) and their derivatives are continuous across
z = 0, L. The continuity of W and IT across z = 0, L then yields (Eltayeb & McKenzie 1977)

Wl=[¥1=0 at z=0,L, (3.26)

where the square bracket denotes the jump in the quantity within.
Now the solution of (2.4) and (3.9) in the uniform regions I and III are

¥y = exp {ikzlz}+Rexp{—-ikzIZ},} (3.27)
Vg = Texp{ik,32} .
where £, (i = 1, 3) are given by
B2+ 1% (0F —1BVE) (N2 -2} + 1277
k2 —
e

and £, and £,3 must be chosen in such a way that the incident wave, amplitude unity, transports
energy towards the layer while the reflected wave, amplitude R, and the transmitted wave,
amplitude T, transport energy away from the layer; in the case £2; < 0, k3 must be chosen so that
ks is negative. The wave-invariant (2.7) can be evaluated in regions I and III to find

sl =ky(1- IR'Z), Ay = kz3| T’|2 (3.29)

Since equation (2.4) is regular at z = 0, L then the wave-invariant is continuous there. If the
shear layer is free of critical levels, the invariance of &7 yields

|R|* = 1~ (Ks/key) | T'|2 (3.30)

This equation immediately shows that the reflected wave is amplified (i.e. |R| > 1) ifk/k,; < 0.
Our immediate objective is to determine whether this condition can be obeyed by any wave in the
absence of a critical level within the shear layer. The wave normal surfaces will prove helpful in
this respect in the sense that one can see where the prospective waves in regions I and III, which
are likely to interact to give £ 3/k,; < 0, are. For example, if in figure 24 we can have a magnetic-
velocity shear in which /, moves away from the axis and at the same time [, moves fowards the axis
as the height increases (or decreases) it will be possible for some waves to be over-reflected. Indeed
when the condition for this, and for similar situations in figure 24, to occur is analysed, it is found
that wave amplification can take place in the following situations:
(1) Ifthe conditions
Vs < (402 — N2)

N2 < w? < 402,
4 o)

b

w2

7 )%—w], kU; < 0, (3.31)
1

o> B (s
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MAGNETIC-VELOCITY SHEARS 619

are satisfied, then all waves with £ and [ such that

[w(w+22)]F (03— N2 )%}
min{ 12320, 'R (3.32)
are over-reflected.
(ii) If the conditions
N2 < w? < 402, IK}* > N(w?— N?2)-3,
1
|Us| > V(02— N2t -V, kU; > 0, (3.33)
are satisfied, then all waves with % and [ in the range
| D] . (02— N2)3 [6((?)+2Q)]%}
max (O, e < |{| < min A 7 , (3.34)
are over-reflected.
(iii) If
N2 < 40Q% < 0?,
N2 N2 V2 N?
RN V2 2 —N?
|Us| > V= V(02— N®)}|w, kU; >0, (3.35)
then all waves possessing £ and / such that
0] M___%fiﬂ_i‘} (02— NBE
max{ 7" 7 < || < A (3.36)
have an amplified reflected wave.
(iv) If 7
w? > max (N2, 4022, N4[40?),
V3 42— N2 N2(N2—402)
775 M| T i |
|4 w?V3\ %
|Us| > Z)l(N2+ V%") -V, kU; <0, (8.37)
then all waves with £ and [ satisfying
{[a)(w+2!2)]?’ (3 K} | > (3.38)
4

are amplified.

Note that it has been assumed that w > 0 and V is always positive since the iransformationV—>—V leaves
the relevant equations unchanged.

The examination of these conditions for over-reflexion shows that the transmitted wave can be
either an Alfvén wave modified by rotation and gravity or an inertial wave modified by magnetic
and gravitational effects. Since the study of gravity waves incident upon a finite velocity shear
(Eltayeb & McKenzie 1975) shows that wave amplification is not possible in the absence of critical
levels within the shear layer, it will be instructive to investigate the cause of wave amplification
here.
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620 I.A.ELTAYEB

The investigation of the wave normal surfaces (see figures 4 and 5) in the absence of a magnetic
field or rotation shows that, in either case, wave amplification is not possible at least in the
absence of critical levels. Thus the cause of wave amplification is the simultaneous action of magnetic
and rotational effects.

\
\¢
\

N
\
\

Ficure 4. The wave normal curves for two dimensional inertial-gravity waves (V = 0). The continuous lines
refer to N2 > w? > 40? and the discontinuous lines apply for N2 < w? < 402 Note that the possible ray
trajectories here are of the forms (a) and (¢) of figure 3. £, = (wx N)|U, k. = (0+2Q)/U.

F1eure 5. The cross section of the wave normal surfaces for hydr?magnetic-gravity waves (2 = 0) in the (/, k,)
plane. The continuous (discontinuous) curves apply for N2 2 ®2 The ray trajectories that can arise are of the
form (c¢) of figure 3 for the former and of the form (a) for the latter. [, = (&*— N DYV, 1, = O[V.

When one critical level of the type @ = 0 exists within the layer, the wave-invariant is dis-
continuous there and the expressions (3.20) and (3.29) yield (in the notation of §3.3).

B 1—|BJA|2
~ exp{+2nE}—|B/A|2exp{T 2rnE}

IR? = 1 _’;_zjmm, A (3.39)
Inspection of the wave normal surfaces shows that the transmitted wave will be evanescent
(i.e. k23 < 0) if the wave approached the critical level from the propagating side, provided the
conditions V' = 0, N2 > & > 402 are not satisfied simultaneously (see figure 24). In this situation
|R|? =1 (i.e. perfect reflexion) although the wave is still propagating on the far side of the
critical level as is clear from (3.17). However, if the wave approaches the critical level from the
non-propagating side, as would be the case, for example, in a wind increasing with height if
ka1 < 0, the wave may emerge as a propagating wave (£2; > 0) in region III. In such cases the
condition for wave amplification will depend on the sign of A as well as on those of &,; and £_;.
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MAGNETIC-VELOCITY SHEARS 621

As an illustration we shall consider a layer in which the magnetic field is uniform (but neces-
sarily non-zero) throughout the medium and U( > 0) increases steadily from zero at z = 0 to
U; at z = L. Suppose thatw? < [2V2 and choose £ and [ (> 0) such that

0+ Q— (22 +2V)E > kU > 0—1V. (3.40)

Thus a critical level of the Alfvén mode type @ = 0 exists just below the far end of the shear layer.
The expression for B[4 can be written as (see Eltayeb & McKenzie 1977)

B_ikyWh(L) -~ Wi(L)
A~ WiL)— gLy

(3.41)

where W, and W, are the two independent solutions of (2.4), (2.5) and (3.9) defined in such a way
that near the critical levels they reduce to the 4 and B solutions respectively. Since the critical
level is just below the level z = L, we can approximate the solution by (3.18). Thus

A = dky(L—z)E-texp{—2nE} (E> 1). (3.42)

Now for the situation (3.40) £,; < 0 and hence wave amplification, though weak, is present for
large E. Because A represents the relative jump in the intensity of the wave across the critical level
we observe that critical level absorption and wave amplification for hydromagnetic-inertial-
gravity waves can occur simultaneously; a result which is consistent with the findings of Eltayeb
& McKenzie (1975) for gravity waves incident upon a shear layer.

When more than one critical level of the type a = 0 exists within the layer, the problem
becomes more complicated for general U and V and we will not study it here.

4. MAGNETO=ACOUSTIC-GRAVITY WAVES
4.1. Formulation

Consider an isothermal, inviscid, perfectly conducting medium. Choose a cartesian system
of coordinates in such a way that the z-axis is vertically upwards. Then the equations of motion,
continuity, induction, energy and Gauss’ law allow a basic state in which the density obeys (3.3)

and uy= U(2)%, B,=B(2)4,

o '
5.~ ~# BB —pyg, (4.1)

in the notation of the preceding section.
The equation governing the vertical component, W, of the velocity for two dimensional
infinitesimal disturbances (given by (3.5) with [/ = 0) is (2.1) with

@ = 022+ V?) — V%2,

T(ANS . 2,2 N4, 2
=—,3a+VV'aA)2—k202)+kU(@(ﬁ ’”)[Vhr ‘i”o)z],

(02 — k22
¢y = (0% —K2V2) (02 — k2®) +k202N2+kU0A) a_ﬁkga

2/C3g02(3 U’ 2k2 U’2[V2(&\)2 —_ k2€2)2 + 02@4]
T (=R 2(0? — k26?)
+2kU'VV' (02 — k2e?) [&, (4.2)
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622 I.A.ELTAYEB

where ¢ is the velocity of sound (assumed uniform). The x-component of u, the perturbation
fluid pressure p and the magnetic induction (4, 5,) are given by

u = [(kg—OU )W — kW' [i(52 — k2e?),
_  [0P 3BV ) — k0T W 0
o

' 1% (6 — kc?) ’
bx:_(Bw.—t/;BU)W_B.VAV, bz:_gw_ (4.3)
1w 10w w

Thus in general the equation for W is singular at
0% = 0, k22, K2c2V2/(c®+ V?).
However, when the transformation (2.3) is used, we find that

(02 —k?) (D2 —E2V?) +A2%2N?

= 1422
C N a 4ﬂ
BOAU (B~ 3]") BV (@—Re)__ResdU"
a(é)2_k252) t 2 a (D —I2?)
_VV(@2—k?) _2BAOVV'U V0% (02 — K?)
a a? 2
k202 V2 3&\)2

_ ke

kU2 [42(62 “F T a(0? —k262)2] ) (4.4)

which is not singular at & = 0, but the other singularities of (4.2) remain. The expression for C
here is again real and hence the wave-invariant is given by (2.7), (2.4) and (4.4). Written in
terms of Wit is

. Re[—i(aW’W+b[W|2)]

0’)2(@2 —‘k2()2) (45)

In analogy with gravity waves in an incompressible medium it would have been expected that
the vertical transfer of horizontal momentum, taking account of the compressibility of the medium,
would be proportional to /. However, this is not the case and no simple physical interpretation
of the wave-invariant is possible here.

4.2. The wave normal curves
When variations in the background state are neglected, a dispersion relation is obtained

N2 — F2,2) (/2 — 2T/ 2 22\ 2
(02 — k2c2) (02 — k2V'2) + k232N 14, (4.6)

2 —_
k= D22+ V2) — k%P2 4

When N =g =0, we recover the dispersion relationship for magneto-acoustic waves (see
Lighthill 1960; McKenzie 1973). Now whether N and £ vanish or not the wave normal curves will

possess two asymptotes at
k=Fkeor =0[[UxVe(c2+V?2)-]. (4.7)

Also when N = f = 0, k, vanishes when £ takes one of the values

(0] @ (0] (O]

=gy kesgry g =g (4.8)
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MAGNETIC-VELOCITY SHEARS 623

Here the subscripts S and F denote slow and fast modes and the values given in (4.8) correspond to
¢ > V2;if V2 > ¢2 then the subscripts must be interchanged (see McKenzie 1973 and figure 8).
The notation of (4.8) will be adopted even if N and £ do not vanish.

The most important difference between the slow and fast modes, when w? > }42(c2+12),
is that the slow modes’ wave normal curves approach asymptotes and hence their rays exhibit
critical levels while the wave normal curves of fast modes do not possess asymptotes and hence
their rays merely change direction at the reflexion points (see figure 11).

kotk

F16URE 6. The wave normal curves for two dimensional magneto-acoustic waves (illustrated for 0 < U < Ve(¢2+ V2)~%
and © > 0, = 3f(c24 V2)}) for different values of N2 The discontinuous curves correspond to N2 = N2
(see equation (4.9)). Note that the two points 4 and B as well as the positions of the asymptotes are unaffected
by N.

It is instructive, especially when discussing over-reflexion in §4.4 below, to investigate the
influence of variations in U, V and N. Consider the influence of buoyancy. For fixed U, V, ¢ and
F? < 40?[(c®+ V'?), the wave normal curves possess four reflexion points, two of which occur for
negative £ and two for positive £, when N = 0. As N2increases the two pairs of reflexion points on
either sideof the £,-axis approach each otherand coincide at £ = kywhen N = Np, (weshall always

assume that N > 0).
2(;2 4+ 2
N2 =192 [% - Vz] , Y= ki+1pe, (4.9)

where

{20 £ [4U202 — (2U2 -2 — V?) {20% — 1/2(c2 4 V2)}]3)E
- (2U2—c2-17?) ’
Note here that Ny, is a function of U and V, for fixed ¢ and f. For N2 > N}, the branches of the
slow and fast modes join together (see figure 6). Since the vertical components of the group
velocity for the slow and fast modes have different signs then the direction of the group velocity

ko

(4.10)

must change abruptly at the points where the two branches meet, i.e. the two branches meet in a
cusp. Now the vertical component W, of the group velocity computed from (4.6) is
dw  k,  [02(c2+ V?) — k221 2]2

We =%k = oo —HAVI- (2T VONT (4.11)

41 Vol. 285. A.
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A similar expression for the component of group velocity in the x-direction is also obtainable.
Equation (4.11) shows that W, changes sign at & = £, where £ is a root of

O — 2Vt — (2+ VE)N2k2 = 0. (4.12)
In the absence of a flow the cusps are given by
2= {—(2+ V2)N2+[(c2+ V?2)2N1 + 40%2N?]3}/2:2V2, (4.13)
Cl)4
1 2~ 2
4 which shows that 2~ CEYENE N2->oc0. (4.14)
\Jl‘\];\\’l Thus the cusps do not vanish completely for any finite value of N. Also note the dependence of
i k on V (and ¢) for large N.
P
OH
~ =
)
= O
=w
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Ficure 7. The manner in which the wave normal curves for magneto-acoustic waves in a flow, evolve with the
increase of the flow (counting up). The curves start with N2 > N3,

Y B \

»—J‘ t
;"t>" ’ /
ok 7
=
= O
3 \
=u
i . l
\_y<
3 112 4

Ficure 8. The wave normal curves for magneto-acoustic waves for different values of U for fixed ¥ and ¢ when
N < N, and |U| < |Ve(c2+ V2)-%|. The ordinates 1 and 2 are used to trace the ray trajectories 1 and 2 of
figure 11 while the ordinates 3 and 4 correspond to possible amplifying waves (see §4.4).
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MAGNETICG-VELOCITY SHEARS 625

If there is a flow the cusps will still persist for large values of N but the value of N, increases
with |U|. If N > N, for no flow and if the flow is increased then the cusps will move towards the
k-axis and at the same time the cusp at £ > 0 moves towards the k,-axis while the one at £ < 0
moves away from the £, -axis (see figure 7). For values of N < Ny or for large enough values of
|U|, the wave normal curves evolve in the manner illustrated in figures 8 and 9.

1 I
I I\
T
/|
/ l 1\ /
/ \ /
| \ /
Y /N
| | /
[ A /
| \ kg l/kFl k
] 1 \
/
A\
i~ X
|/ \'\\
Il, ‘ \
|
I
i

Ficure 9. The wave normal curves for magneto-acoustic waves for |U| > |Ve(c24 V?)~3|. The continuous lines
correspond to min (¢2, V%) < U? < max (¢2, V?) and the discontinuous lines correspond to U? > max (¢?, V2).
The illustration is for U > 0. The wave normal curves for U < 0 are the mirror reflexions of these in the
k,-axis.

Ficure 10. The evolution of the wave normal curves for magneto-acoustic-gravity waves (counting up)
with the increase of V2.

When V?2is increased, keeping the other parameters fixed, the wave normal curves evolve in a
slightly different manner. If N < My, the fast (acoustic) modes shrink towards the £,-axis and
eventually disappear. If, however, N > N, then as "2 is increased the cusps move towards the
k, and k-axes and reach the k-axis at k = &, [cf equation (4.10)]. For still larger values of V2 the
slow and fast modes behave in the same manner as for N < N, described above (see figure 10).

41-2
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In contrast with hydromagnetic-inertial-gravity waves not all possible ray trajectories of
hydromagnetic-acoustic-gravity waves in a velocity shear exhibit critical levels. The slow modes
(which are Alfvén waves modified by gravity and compressibility) do exhibit critical levels but
the fast (acoustic) modes do not (see figure 11). When N > Ny, a slow mode, rather than be
reflected towards a critical level, can transform into a fast mode (at the cusp) and propagate
upwards before it eventually propagates with the flow. On the other hand, a fast mode can
transform to a slow mode and propagate towards a critical level (see figure 12). Similar be-
haviour also occurs in magnetic shears (see figure 13).

X4

1 2

Ficure 11. The ray trajectories arising in a magnetic-velocity (U > 0) shear in which both magnetic field and
velocity increase with height. If the velocity and field decrease with height, the rays are obtained from these
by the reflexion of 1 in the line joining its ends and by reversing the arrows in 2 (see figure 9).

critical level

Ficure 12. The rays for waves in a magnetic-velocity shear with % satisfying || > |k| > |k| (N > Np). These
waves, for each of which there corresponds a ray in the opposite direction, can give rise to wave amplification.

critical level A% critical level

slow

cusp

fast

F1cURE 13. Ray trajectories arising in a magnetic shear increasing with height in an isothermal fluid. In addition
to the ones shown here there are also the type 2 of figure 9 and the type (a) of figure 3. It is shown in §4.4
that these rays can give rise to amplified reflected waves.

4.3. Critical levels

The wave-invariant is continuous everywhere except possibly at the singularities of (2.4)
and (4.4), i.e. at ¢ = @%—£%? = 0. It should be noted here that the singularity at &2 = 22 is
absent not only in the W.K.B.]J. treatment but also if there is no shear flow even if the magnetic
shear is present.
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MAGNETIC-VELOCITY SHEARS 627

In the neighbourhood of @ = 0, we have

U+ 12— 20) = 0. (4.15)

The legitimate solutions on either side of the critical level are (cf. Eltayeb & McKenzie 1977)

_ [(ze=2)¥{Ad+Bln(z,—2)} (2 <z2)
o= it

Fi(z—zo)HAd+B[ln(z—z,) Fin}] (z > 2, (4.16)

where the upper (lower) sign is taken if k = W V(@2 V, +k3V3U,) Z 0. The evaluation of the
wave-invariant below and above the critical level yields

Mbelow =Re ( —'IA_B)’
A apove = JZ{belowi"":lBP' (4'17)
Near the singularities @2 = k%2, we have

' —3Y)(z—2.)* =0, (4.18)

which is identical to (3.22). The solution is then similar to (3.23) and thus the wave-invariant is
continuous across this singularity. If we remember that this singularity is similar to that discussed
in the preceding case when @2 = [2//2in that both singularities are absent in the W.K.B.J. treat-
ment, it is tempting to speculate that the wave-invariant may be continuous except at singularities
predicted by the W.K.B.]J. approximation but see §5 below.

4.4. Reflexion by and transmission through a magnetic-velocity shear

Suppose that the basic state (4.1) in the medium described at the beginning of this section is
given by (3.25). The solutions in regions I and III are then given by (3.26) and (3.27) provided
k,, and kg satisfy
(OF — k%) (OF —K*V?) +R%2N2 | e

FErm-kary

k2 = (1=1,3) (4.19)
and the choice of signs of k,; and %5 is adhered to.

Now if no critical levels exist within the layer, the wave-invariant is continuous everywhere
and we get k

R = 1= |T*(kyg/ksn). (4.20)

The inspection of the wave normal curves (see figures 7-10) shows that wave amplification is
possible (i.e. £ 5/k,; < 0) in the absence of critical levels and that it always occurs as a result of the
interaction of the slow and fast modes in regions I and III. However, before we write down the
conditions for wave amplification, we need to adopt a convenient notation. In region I, U < 0
and we have

HY = — KA = — (/- (f= )12V 3,
{8 - (s (P 2
where the superscript refers to region I, and
S=w?(+ V%) —c2N2— %ﬂzﬂV%,} (4.22)
¢ = 427202 [w? — }02(2 + V)],

provided N < NP, where NP is the value of Ny, as given in equation (4.9), when U = 0 and
V =1, ¢ being positive (we shall not deal with ¢ < 0 for simplicity). For values of N > NJ’ the
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values (4.21) are complex and the fast and slow modes meet in cusps at k£ = + £®, where £®1is the
positive root of (4.13). The asymptotes will be denoted by £,.
In region III, &) , and £} , are the roots of

(63— k2?) (D3 — R2V3) + K22 N2 — 3 B2[03(c + V3) — k22 V3] = 0,
by = w—kUj, (4.23)

if N < N, where N is the value of Ny, as given in equation (4.9), when U = Uy and N =T
If N > N, the fast and slow modes meet in cusps at £, where these are the two real roots of
(4.12) when & = @&y and V = V,. The asymptotes in region III will be denoted by £2,. Also we
shall refer to the slow and fast modes in both regions I and III by the subscripts of their reflexion
points. For example, the branch with a reflexion point £g; will be denoted ‘the S1 mode’.

Now the conditions for wave amplification can be written algebraically as (see also figures 7
and 8).

(i) Anincident S1 mode in a westerly wind (U > 0) increasing with height will give rise to a
transmitted F1 mode and an amplified reflected S1 mode provided

EY >k if N< NE, (4.24)
KR > —k® if N® < N< N®, (4.25)
® > —f0 if N> NY, (4.26)
and then the amplifying waves will have zonal wavenumbers £ lying in the respective ranges
max (K3, £ ) < k£ < £} if N< N9, (4.27)
max (£9), kL) < k < kY if NP < N< NP, (4.28)
max (@, kD) < k < —k® if N> NP (4.29)

(ii) An incident F2 mode in a westerly wind increasing with height and a magnetic field in-
creasing with height will give rise to a transmitted S2 mode in region III and an amplified
reflected F2 mode provided

) <KD if N< NS, (4.30)
K < kv if NP < N < N, (4.31)
E® < Fo if N> NP, (4.32)

In each case the incident waves must have the respective zonal wavenumbers

K < k < min (K9, k) if N< N, (4.33)
kP <k < min (A, k) if NP < N < N, (4.34)
K9 < k < min (K2, ) if N3 N, (4.35)

(iii) In an easterly wind (U < 0) increasing with height and a magnetic field increasing
vertically, the conditions for wave amplification are obtained by imagining that regions I and
IIT are interchanged and working out the same conditions as in the previous cases. This amounts
to turning figures 7 and 8 through an angle of 180°.

One important result emerging from the conditions (4.24) to (4.35) is that when N > N{
almost any non-zero flow in region III will give rise to wave amplification.
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When we compare the results of this section with those of the preceding one, we find that the
role played by the angular velocity in making wave amplification in the absence of critical levels
within the layer possible is here assumed by compressibility. It is then informative to examine the
réle of compressibility in favouring wave amplification.

If the medium is incompressible (i.e. ¢ —c0) the dispersion relation (4.6) takes the form

K2N2 — 2 + k2V2
K = [ Or—k2V e ]_T}ﬂz’ (4.36)

and the inspection of the wave normal curves (see figure 14) shows that £,4/k,; is always positive
unless a critical level exists within the layer. This shows that compressibility is an essential
ingredient for wave amplification in the present circumstances.

A, ni(a)N2<w2 I
/i I\
/ |
/| i\
// | | \\
A X
A [
B k. ke kol (ke Ryl k. R\ R
¥ | I Tyr
\ | JUB
\‘(, | | A
N L/
\ |/
\ | I//
A\
\l I
1l I
\
\
\
\usv
\
\
%
\
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/
/“h
/
/
/
/

Ficure 14. The wave normal curves for hydromagnetic-gravity waves in an incompressible Boussinesq fluid
(i.e. ¢® —00), when %42 is negligible, in the presence of a flow. In both (a) and (b) £, = (0+ N)/U and
ky = {0U+[0?U%— (02— N?) (U2— V33 (U2-V?). In (b) U, = (1—w?N®)} V. The continuous (dis-
continuous) curves in (b) refer to US V.

In the absence of the magnetic field, on the other hand, (i.e. V = 0) equation (4.6) reduces to
02 —k2%2 kN2

o2 o2 — 1P (4.37)

The wave normal curves are sketched in figure 15. In region I, where no flow is present, the

incident and reflected waves are acoustic-gravity waves. However, in the shear and in region

I1I, these are modified by the flow and they split into acoustic waves (slightly modified by

k2 =
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gravity) and gravity waves (slightly modified by compressibility). Assuming }4%? is small
compared with w? (for 14%?* > w? see McKenzie 1972), we find that N3 = w? for both regions I
and III. If N2 < w? then an acoustic wave propagating with the flow and emerging as a gravity
wave in region III will give rise to an amplified reflected acoustic wave in region I. The con-
dition for over-reflection is that

w?
ky < POy e (4.38)
where k£ = £, is the infermediate positive root of
(w—k|U|)*—k22(w—k|U|)?+k2%2N2? = 0. (4.39)
When (4.38) is satisfied, all waves with £ such that
k< k< min( &l Jﬁz_ﬁ) (4.40)

will be amplified.

Ficure 15. The wave normal curves for acoustic-gravity waves (V = 0) in the presence of a shear flow for
N? > 2. The curve labelled 1 corresponds to no flow and the increasing numbers refer to higher values of
U(> 0). Note that the cusp on the right moves towards the two axes while that on the left disappears as soon
as there is a flow.

When N2 > w? wave amplification takes place for all |Us| > 0. This is because the cusp on the right
of the £,-axis moves towards the £,-axis while the one on the left disappears completely for any
U > 0 (if U < 0 the situation is reversed). The amplifying waves have zonal wavenumbers £ in

the ranges
E® < k < min (£, |0/Uy|) if N2 >w? (4.41)
ky < k < min (£, |w/Ty]) if N2 <o?, (4.42)
|ky| < |k| < |[F®] for all N, (4.43)
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where £, is the intermediate positive root of
(0 —k|Us|)* — K2c*(0 — k| Us|)% + k2c2N2 = 0, (4.44)

and £, is the only negative root of (4.44) if U2 < ¢2 and is —o0 if U2 > ¢?
It is commonly believed that wave amplification (or over-reflexion) is not possible in the

absence of a shear flow. However, this belief stems from studies of the incompressible fluid.

Since the medium here is compressible it is instructive to examine the conditions for wave ampli-

fication in the absence of a shear flow to see if it is possible at all that they can be satisfied. When

we set U = 01in (4.6), we get

—k%?) (0 — K2V %) + k22N 2

o C
: (21 V%) —kaNT

(4.45)

where we have neglected the 142 term. Also assume that U(z) and U in (3.25) vanish.
From the wave normal curves at various heights (see figure 10) it is clear that the condition for
wave amplification in a magnetic shear increasing with height is

M| > K9] for N < N, (4:46)
|F® > [K9| for NP < N < N§, (4.47)
FO| > [E®| for N> N®, (4.48)

where F and S refer to fast and slow; the subscripts 1 and 2 are dropped because of the symmetry
about the k,-axis. To show that these conditions can be met, we immediately see that when
N > Nf, and because the cusps move towards the £, -axis, conditions (4.47) and (4.48) will be
satisfied by only a small change in V. If N < N§), it is not obvious that condition (4.46) can be
satisfied. However, if we consider the extreme case V; — oo, we find that

3) _
k9, — +V[1+2V2+0(V§)}

(@ » ¢2N? ct (4:49)
]C ) i,2= +V[1——(1)2_V§+0 (m)]
If we realize that
KD, > min(-‘;}l‘, 21, (4.50)

as can be deduced from (4.45), then condition (4.46) can be obeyed at least by large values of
V&[V2. For the range of £ for which the waves are over-reflected we have

k@] < |k| < min (|K2.], |4P]) (N < NY), (4.51)
|ED| < |k| < min (FO, |48 ,]) (N® < N < ND), (4.52)
|E®] < |k| < min (FO, |£9,|) (N > ND). (4.53)

These results permit us to conclude that wave amplification can be exhibited by a steadily increasing
magnetic shear, within which no critical levels exist, in a compressible isothermal medium in the absence of a
shear flow.

When a single critical level exists within the layer then from (4.17), using the invariance of &7
below and above the critical level, we get

|R[? = 1= (kaofker) | |2 1| BI¥fkyy for k2 0. (4:54)

42 Vol. 285. A.
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Thus critical levels with k¥ > 0 tend to favour over-reflexion if £,; > 0 and they tend to oppose it
if k,; < 0 while critical levels with ¥ < 0 have the opposite effect.

If a second critical level is also present and if the solutions near it have amplitudes 4 and B it
can be shown that

|R|2 =1- (kz:i/kzl) I le inlBPkZI iTEIBP/kzl (K % O) Kk 2 0)' (4'55)

where & is the value of k at the second critical level. Thus if k and & have similar (different) signs
then the two critical levels supplement (oppose) each other in favouring or hindering wave
amplification.

5. HYDROMAGNETIC-GRAVITY WAVES IN A SHEARED MAGNETIC FIELD
5.1. Formulation

Consider an inviscid, infinitely conducting Boussinesq fluid. The equations of motion, con-
tinuity, induction and Gauss’ law admit a basic state in which

u, =0, Bo = (B:c(z): B, (Z), 0);

Y
V(bo+ Bi[2pt) = po &, (5.1)
in the usual notation, and the density p, has the property that the Brunt-Viisalla frequency
N = Tg‘l [g"vp—ig]% = (M’ Ny’ Nz): (5'2)
is uniform. Note that both B, and g are neither parallel nor perpendicular to the direction of
shear of the magnetic field. This anisotropy of the system has been shown by Acheson (1973) to
give rise to the valve effect. Here we shall exploit this model, because of its anisotropy, to clarify
the nature of the singularities which appear solely because of the inclusion of variations in the
basic state and also to examine the valve effect using a full wave treatment.
Assuming disturbances of the form (3.5), we find that the equation for the component of
velocity in the z-direction, W, satisfies (2.1) provided

a=w—Q*—N;—- N2,

_ QY 2
G = -a(ot - Q- NY) - S (5.3)
where Q = K +1V,, (V) = (B (upo)k, B,/ (up0)}),
o =k*+12 o =FkN+IN, (5.4)

X =IN,—kN, A=a(w?—Q?% —yx2
These equations reduce to those of Acheson (1973) when @’ = 0. However, the inclusion of Q’
introduces two more singularities atA = w? — Q* = 0. The application of the transformation (2.3)
to (5.3) leads to (2.4) with
oo - Q- NY QQI(Ato)  Niot Q3R+ ot
a a(w*— Q% a a? a(w?— Q?) Aa?
QU (o) | QNN 20NNt
a(w?— Q%2 Aa a(w?— Q%22 % (02— Q) ar2 ’

It is worth noting that C'is real despite the anisotropy of the system. However, all the singularities
of (5.3) are retained in this case.
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5.2. The wave normal surfaces
When we set @ = 0 and assume that i occ exp {i£,z}, we find the dispersion relation
XY-ou(?—Q*—N7) Nio®
a T

B = (5.6)

This equation immediately shows that £, is real on both sides of the critical level ¢ = O unlessoor N,
vanishes (see figure 16), i.e. the waves propagate on both sides of the critical level. To consolidate
this result with the findings of Acheson (1973), namely that the critical level a = 0 exhibits
valve effects, we must recognize that the transformation (2.3) removes a propagation part from
the solution. If W oc exp (imz) then the dispersion relation in m is

am®— 2N, om—x*+a(w?—Q*— N2) =0, (5.7)
(cf. equation (2.2) in Acheson (1973) but note that (£, /) > (—#, —{)). The wave normal surfaces
(see figure 17) in terms of m clearly show the valve effect while those in terms of £, do not exhibit
valve effects but indicate that waves approaching the critical level from either side are absorbed
there. This is wholly due to the fact that the transformation (2.3). which in the W.K.B.J. approxi-
mation yields k£, = m — 0N /a destroys the anistropy of the system thereby annihilating the valve
effects. An examination of internal gravity waves in a shear flow when gravity makes an acute
(or obtuse) angle with the direction of flow and shear (Acheson 1973, p- 32) gives similar results.

k.
¥
\ 7
\ /
“ko \| / km kO &
— ! |
Roo // \ /

/ \

Ficure 16. The cross-section in the (%, £,) plane of the wave normal surfaces for hydromagnetic-gravity waves in
an anisotropic medium when / = 0. For non-zero [ slight modifications are required (see equation (5.6)).
The two curves meet at the origin if w?— @*— N2 > 0 otherwise they move apart as indicated by the dis-
continuous lines. k, = (w2— N:-NS)%/VM ky = (02— N2V,

1

m

—ky %/
|
|

RL\
& N

Ficure 17. The cross section of the wave normal surfaces in the (k, m) plane (see equation (5.7)) for [ = 0.
The curves labelled 1, which do not meet except at the origin, correspond to N2+ N2+ N? > 0? >
max (N2+ N2, N2+ N?) while 2 correspond to w? > N2+ N7+ N2. ky and £, are the same as in figure 16.

42-2
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5.3. Critical levels

Near the critical levels @ = 0, we have

¥" + Ry[(z2—2)* = 0,
RE = %'I'/’ﬂa # = Nzo—/chQ(’z' (5'8)
Here Ry is an ‘equivalent Richardson number’ in analogy with gravity waves in a shear flow,
which is a measure of variations in the shear flow. Note that Ry > 1 and hence the problem

is in a sense similar to that of gravity waves in a shear flow when the Richardson number is
greater than }. The solution near this critical level then is

’ {A(zc—z>%+iﬂ+8<ze—z>%-iﬂ (z < >} 59
C\A*(z—z )B4 BX (z—z )b (2> 2), '
where A* = Fidexp (+np), B* = FiBexp (Fnu), (5.10)

in which the upper (lower) sign is taken if 0@, Q. < 0.

Although the amplitudes of the two solutions are drastically changed across the critical level,
especially for large values of || and despite the analogy with gravity waves in a shear flow, care
must be exercised when deductions about the propagation of the waves across the level are made
since the transformation (2.3) in this model involves a propagating part. Now from (2.3), (5.3)
and (5.9) it can be shown that

{A(zc—z)”zi/‘ +B(z,—z) (z < zc)} (5.41)
Az B (2—2,) (2> 2,)) '
in which Af = —Adexp (+2np}, Bf =-—B. (5.12)
The local wavenumbers then are £, = £ , m= 2 , (5.13)
z—2, z—2z,
for the A4 solution, and k, = z_‘LZb , m=0, (5.14)
—%c

for the B solution. Thus in terms of £, the two waves represent ascending and descending waves
but in terms of m one wave is completely absorbed at the critical level while the other propagates
right through. Thus the valve effect is present whatever the scale of variations of the magnetic field in relation
to the wavelength of the waves.

The wave-invariant below and above the critical level is given by equation (3.20) of §3 if we
replace E by p.

In the neighbourhood of the critical levels A = 0 and w?— Q% = 0, ¥ is governed by equation
(3.20) and the solution is therefore similar to (3.23). The wave-invariant is then continuous across
both levels although the solutions are singular across the same levels.

5.4, Reflexion by and transmission through a magnetic shear

In the absence of critical levels of the type a = 0 the invariance of & yields equation (3.30) for
the reflexion coeflicient. However, as is clear from the wave normal surfaces of figures 16 and 17,
it is not possible for £ /k,; to be negative. In the presence of critical levels, on the other hand, it
can be shown in an exactly similar way to that adopted for gravity waves when the Richardson
number exceeded } (see Eltayeb & McKenzie 1975), that wave amplification is impossible.
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6. CONCLUDING REMARKS

Ithasbeen shownhere that all/linear wave motionsin one dimensional magnetic and /or velocity
shears, which are governed by a second order linear ordinary differential equation, possess a
quantity 2/ which is independent of the coordinate in which the magnetic field and velocity vary;
the quantity &/ is continuous everywhere except possibly at the points where the governing
equation is singular. The search for simple physical interpretations of the wave-invariant 7 in
different situations has not always been successful. (A similar difficulty was encountered by
Grimshaw (1975) in his study of the critical layer absorption in a rotating fluid.) Perhapsit should
not always be expected that the wave-invariant will have a simple physical meaning. The
significance of & lies in the fact that simple physical quantities like momentum transfer, angular
momentum flux and energy flux can always be expressed in terms of it.

When the wave-invariant is used as a measure of the intensity of the wave and the solutions
near the singularities in various magnetic and/or velocity shears (only three of which are included
above) are studied, it is found that the wave-invariant is always discontinuous across singularities
predicted by the W.K.B.]J. approximation, and is always continuous across singularities whose
presence is solely due to the inclusion of variations in the basic state although the solutions are
necessarily singular there.

The investigations of the solutions in the neighbourhoods of the critical levels giving rise to
valve effects (see §5) show that near these levels the motions are usually governed by an ‘equiva-
lent Richardson number’ Ry (say), i.e. the scale of the motions in the vicinity of these levels
depends on a dimensionless parameter which is a measure of the scale of variations of the basic
state. The valve effect is found to persist for all values of Rg. This indicates that the valve effect
does not occur as a result of the W.K.B.]J. approximation.

The studies of the reflectivity and transmitivity of different waves by finite magnetic and/or
velocity shears show that the reflected wave can be amplified in the absence of critical levels within the shear
layer. If the fluid isincompressible, this can only occur under the simultaneous action of a magnetic
field and rotation in the presence of a shear. Wave amplification (or over-reflexion) here relies
heavily on the presence of slow hydromagnetic inertial waves modified by gravitational effects
(these are termed MAC-waves by Braginsky 1967) which propagate across magnetic field lines
and they exist only in the presence of rotation (Hide 1966). In a compressible isothermal medium,
on the other hand, wave amplification can occur in the absence of critical levels if both gravity
and a magnetic shear are present, even if a shear flow ts excluded. Here wave amplification involves
the interaction of slow and fast hydromagnetic-acoustic-gravity waves (as opposed to positive
and negative energy waves).

In a velocity shear it is generally accepted that the over-reflected wave extracts energy from the
streaming motion. Now magnetic systems are known to possess instabilities which are wholly due
to the spatial variations in the magnetic field (Acheson 19734). In a magnetic shear in a com-
pressible fluid, in the absence of a flow, it seems plausible to suggest that the over-reflected wave
extracts its energy from the magnetic energy of the system. Whether this can be achieved in a
magnetically stable system or not can only be decided by a stability analysis. Even if over-
reflexion can occur in a stable system, a nonlinear study is necessary to clarify the manner in
which the energy is extracted by the wave.

It is a pleasure to thank Professor J. F. McKenzie for many illuminating discussions.
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